Chapter 5 Permutations, Combinations, and Generating

 Functions

 Functions}

5-1 Permutation and Combination

Rule of sum: The total items can be broken into first and second classes. The first class has m items and the second class has n items. Selecting any one in either class has $m+n$ ways.
Eg. There are 3 men and 4 women in a company. If the boss needs only one person to clean rooms, he has $3+4=7$ choices.

Rule of product: A procedure can be broken into first and second stages. If the first stage has m outcomes and the second stage has n outcomes, the total procedure has $m n$ ways.
Eg. There are $\mathbf{3}$ men and 4 women. If they want to marry to each other, there are couples in $3 \times 4=12$ ways.

Permutation: Count arrangements of objects with reference to order.
Eg. How many permutations of the letters $A B C D$ contain the substring $C D$?
(Sol.) $3!=6(A B C D, B A C D, A C D B, B C D A, C D A B, C D B A)$

Eg. How many permutations of the letters $A B C D$ contain the letters $C D$ together in any order?
(Sol.) $3!2!=12(A B C D, B A C D, A C D B, B C D A, C D A B, C D B A, A B D C, B A D C, A D C B$, BDCA, DCAB, DCBA)

The number of r-permutations of n distinct objects: $P_{r}^{n}=\frac{n!}{(n-r)!}$
Eg. In how many ways can we select a chairman, vice-chairman, secretary, and treasurer from a group of $\mathbf{1 0}$ persons?
(Sol.) $P_{4}^{10}=\frac{10!}{(10-4)!}=5040$

The number of permutations around a circular table of n distinct objects: $(n-1)$!
Eg. In how many ways can 6 persons be seated around a circular table?
(Sol.) (6-1)! $=120$

Combination: Count arrangements of objects with no reference to order.

The number of r-combinations of n distinct objects: $C_{r}^{n}=\frac{n!}{r!(n-r)!}$
Eg. How many eight-bit strings contain exactly four 1's?
(Sol.) $C_{4}^{8}=\frac{8!}{4!4!}=70$

Eg. Determine the number of paths from the lower-left corner of the left grid to the upper-right corner.
(Sol.) $C_{3}^{7}=C_{4}^{7}=\frac{7!}{3!\cdot 4!}=35$

The number of r-combinations of \boldsymbol{n} distinct objects with repetition:

$C_{r}^{n+r-1}=\frac{(n+r-1)!}{r!(n-1)!}$
Eg. A fast-food restaurant provides 4 kinds of foods. They are cheese-burgers, hot dogs, sandwiches, and donuts. How many purchases are possible if 7 customers buy them?
(Sol.) $n=4, r=7, C_{7}^{4+7-1}=\frac{10!}{7!(4-1)!}=120$

Eg. In how many ways can we distribute 10 identical balls among 6 distinct boxes?
(Sol.) $n=6, r=10, C_{10}^{6+10-1}=\frac{15!}{10!(6-1)!}=3003$

Eg. Determine the number of all nonnegative integer solutions for $x+y+z=4$.
(Sol.) $n=3, r=4, C_{4}^{3+4-1}=\frac{6!}{4!(3-1)!}=15$

Eg. Determine the number of all positive integer solutions for $x+y+z=6$.
(Sol.) The problem is identical to "Determine the number of all nonnegative integer solutions for $\boldsymbol{x}+\boldsymbol{y}+\mathbf{z}=\mathbf{6}-\mathbf{3}=\mathbf{3} .$, , $\therefore n=3, r=3, \quad C_{3}^{3+3-1}=\frac{5!}{3!(3-1)!}=10$

Eg. Determine the number of all nonnegative integer solutions for $x+y+z<4$.
(Sol.) The problem is identical to "Determine the number of all nonnegative integer solutions for $\boldsymbol{x}+\boldsymbol{y}+\mathbf{z}+\boldsymbol{w}=\mathbf{4} \mathbf{- 1}=\mathbf{3} . \prime, \therefore n=4, r=3, C_{3}^{4+3-1}=\frac{6!}{3!(4-1)!}=20$

Theorem $(\mathbf{1}+\boldsymbol{x})^{\mathbf{n}}=\sum_{i=0}^{n} C_{i}^{n} x^{i}$.
Theorem $(1+x)^{-n}=\sum_{i=0}^{\infty} C_{i}^{-n} X^{i}=\sum_{i=0}^{\infty}(-1)^{i} C_{i}^{n+i-1} x^{i}$,
where $C_{i}^{-n}=\frac{(-n)!}{i!(-n-i)!}=\frac{(-n)(-n-1)(-n-2)(-n-3) \cdots(-n-i+1)}{i!}=(-1)^{i} C_{i}^{n+i-1}$.
Eg. Find the coefficient of x^{5} in $(1-2 x)^{-7}$.
(Sol.) $(1-2 x)^{-7}=\ldots+C_{5}^{-7}(-2 x)^{5}+\ldots$
$C_{5}^{-7}=(-1)^{5} C_{5}^{7+5-1}=(-1)^{5} C_{5}^{11}=-462,(-462) \times(-2)^{5}=14784$

Theorem For any real number $s,(1+x)^{s}=1+\sum_{i=0}^{\infty} \frac{s(s-1)(s-2)(s-3) \cdots(s-i+1)}{i!} x^{i}$.
Eg. Expand $(1+3 x)^{-1 / 3}$.
(Sol.)
$(1+3 x)^{-1 / 3}=1+\sum_{i=0}^{\infty} \frac{\left(\frac{-1}{3}\right)\left(\frac{-1}{3}-1\right)\left(\frac{-1}{3}-2\right) \cdot \cdot\left(\frac{-1}{3}-i+1\right)}{i!}(3 x)^{i}=1+\sum_{i=0}^{\infty} \frac{(-1)(-4)(-7) \cdots(-3 i+2)}{i!} \cdot x^{i}$.

5-2 Generating Functions

General generating function: $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots$ is the general generating function of a series: $a_{0}, a_{1}, a_{2}, a_{3}, \ldots$.
Eg. $\frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+\cdots$ is the general generating function of a series: $1,1,1,1, \ldots$.
Eg. $\frac{d}{d x}\left(\frac{1}{1-x}\right)=1+2 x+3 x^{2}+4 x^{3}+5 x^{4}+\cdots$ is the general generating function of a series: $1,2,3,4,5, \ldots$.

Eg. $\quad(1+x)^{n}=C_{0}^{n}+C_{1}^{n} x+C_{2}^{n} x^{2}+C_{3}^{n} x^{3}+C_{4}^{n} x^{4}+\cdots+C_{n}^{n} x^{n} \quad$ is the general generating function of a series: $C_{0}^{n}, C_{1}^{n}, C_{2}^{n}, C_{3}^{n}, C_{4}^{n}, \cdots, C_{n}^{n}$.

Eg. $\quad(1+x)^{-n}=C_{0}^{-n}+C_{1}^{-n}(-x)+C_{2}^{-n}(-x)^{2}+C_{3}^{-n}(-x)^{3}+C_{4}^{-n}(-x)^{4}+\cdots=\sum_{i=0}^{\infty} C_{i}^{n+i-1} x^{i}$ is the general generating function of a series: $\left\{C_{i}^{n+i-1}\right\}, \mathbf{i} \geqq \mathbf{0}$.

Eg. Find the general generating functions of (a) $1,-1,1,-1,1,-1, \ldots$ (b) $C_{1}^{8}, 2 C_{2}^{8}, 3 C_{3}^{8}, 4 C_{4}^{8}, \cdots, 8 C_{8}^{8} .(\mathbf{c}) \mathbf{1}, \mathbf{2}, \mathbf{4}, \mathbf{8}, \mathbf{1 6}, \ldots$ (d) $\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}, \ldots, \mathbf{n}, \ldots$ (e) $\mathbf{0}, \mathbf{1}$, $2,3, \ldots, n$.
(Sol.) (a) $1-x+x^{2}-x^{3}+x^{4}-x^{5} \cdots=\frac{1}{1+x}$
(b) $C_{1}^{8}+2 C_{2}^{8} x+3 C_{3}^{8} x^{2}+4 C_{4}^{8} x^{3}+\cdots+8 C_{8}^{8} x^{7}=\left(C_{0}^{8}+C_{1}^{8} x+C_{2}^{8} x^{2}+C_{3}^{8} x^{3}+\cdots+C_{8}^{8} x^{8}\right)^{\prime}$ $=\left[(1+x)^{8}\right]^{\prime}=8(1+x)^{7}$
(c) $1+2 x+4 x^{2}+8 x^{3}+16 x^{4}+\cdots=1+(2 x)+(2 x)^{2}+(2 x)^{3}+(2 x)^{4}+\cdots=\frac{1}{1-2 x}$
(d) $x+2 x^{2}+3 x^{3}+4 x^{4}+\cdots+n x^{n}+\cdots=\sum_{n=1}^{\infty} n x^{n}=x \cdot \sum_{n=0}^{\infty}\left(x^{n}\right)^{\prime}=x \cdot\left(\frac{1}{1-x}\right)^{\prime}=\frac{x}{(1-x)^{2}}$
(e) $x+2 x^{2}+3 x^{3}+4 x^{4}+\cdots+n x^{n}=\sum_{m=1}^{n} m x^{m}=x \cdot \sum_{m=0}^{n}\left(x^{m}\right)^{\prime}=x \cdot\left(\frac{1-x^{n+1}}{1-x}\right)^{\prime}$
$=x \cdot \frac{1-x^{n+1}-(n+1)\left(x^{n}-x^{n+1}\right)}{(1-x)^{2}}=\frac{x-x^{n+2}-(n+1)\left(x^{n+1}-x^{n+2}\right)}{(1-x)^{2}}$

Eg. $f(x)=\frac{x-3}{x^{2}-3 x+2}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots, \boldsymbol{a}_{50}=$?
(Sol.) $f(x)=\frac{x-3}{x^{2}-3 x+2}=\frac{2}{x-1}-\frac{1}{x-2}=\frac{-2}{1-x}+\frac{\frac{1}{2}}{1-\frac{x}{2}}=(-2) \sum_{n=0}^{\infty} x^{n}+\frac{1}{2} \sum_{n=0}^{\infty}\left(\frac{x}{2}\right)^{n}$

$$
a_{50}=(-2)+\frac{1}{2}\left(\frac{1}{2}\right)^{50}=\frac{1}{2^{51}}-2
$$

Eg. Compute $C_{k}^{n}+C_{k}^{n+1}+C_{k}^{n+2}+C_{k}^{n+3}+\cdots+C_{k}^{n+m}$.
(Sol.) $(1+x)^{n}+(1+x)^{n+1}+\ldots+(1+x)^{n+m}=\frac{(1+x)^{n}\left[1-(1+x)^{m+1}\right]}{1-(1+x)}=\frac{(1+x)^{n+m+1}-(1+x)^{n}}{x}$ $C_{k}^{n}+C_{k}^{n+1}+C_{k}^{n+2}+C_{k}^{n+3}+\cdots+C_{k}^{n+m}$ is a_{k} of Left, and $C_{k+1}^{n+m+1}-C_{k+1}^{n}$ is a_{k} of Right
$\therefore C_{k}^{n}+C_{k}^{n+1}+C_{k}^{n+2}+C_{k}^{n+3}+\cdots+C_{k}^{n+m}=C_{k+1}^{n+m+1}-C_{k+1}^{n}$

Eg. Compute $C_{0}^{n}+2 C_{1}^{n}+4 C_{2}^{n}+8 C_{3}^{n}+\cdots+2^{n} C_{n}^{n}$.
(Sol.) Let $f(x)=(1+2 x)^{n}=C_{0}^{n}+2 x C_{1}^{n}+4 x^{2} C_{2}^{n}+8 x^{3} C_{3}^{n}+\cdots+(2 x)^{n} C_{n}^{n}$

Set $x=1, C_{0}^{n}+2 C_{1}^{n}+4 C_{2}^{n}+8 C_{3}^{n}+\cdots+2^{n} C_{n}^{n}=3^{n}$

Eg. Compute $C_{1}^{n}+2 C_{2}^{n}+3 C_{3}^{n}+4 C_{4}^{n}+\cdots+n C_{n}^{n}$.
(Sol.) Let $f(x)=(1+x)^{n}=C_{0}^{n}+C_{1}^{n} x+C_{2}^{n} x^{2}+C_{3}^{n} x^{3}+C_{4}^{n} x^{4}+\cdots+C_{n}^{n} x^{n}$, then
$f^{\prime}(x)=n(1+x)^{n-1}=C_{1}^{n}+2 C_{2}^{n} x+3 C_{3}^{n} x^{2}+4 C_{4}^{n} x^{3}+\cdots+n C_{n}^{n} x^{n-1}$

Set $x=1, \quad f^{\prime}(1)=n 2^{n-1}=C_{1}^{n}+2 C_{2}^{n}+3 C_{3}^{n}+4 C_{4}^{n}+\cdots+n C_{n}^{n}$

Eg. Show that $\left(C_{0}^{n}\right)^{2}+\left(C_{1}^{n}\right)^{2}+\left(C_{2}^{n}\right)^{2}+\left(C_{3}^{n}\right)^{2}+\left(C_{4}^{n}\right)^{2}+\cdots+\left(C_{n}^{n}\right)^{2}=\left(C_{n}^{2 n}\right)$.
(Proof) Left $=a_{0}$ of $(1+x)^{n}(1+1 / x)^{n}$, Right $=a_{0}$ of $\frac{(1+x)^{2 n}}{x^{n}}, \therefore$ Left $=$ Right.

Application of the general generating function of a series: Calculating combinations

Eg. There are 2 A's and 2 B's. (a) In how many ways of combinations can we select 2 letters from A 's, and B 's? (b)In how many ways can we select 3 letters from A 's, and B 's?
(Sol.) (a) $A A, A B$ or $B A, B B: 3$ ways. (b) $A A B$ or $B A A$ or $A B A, B B A$ or $B A B$ or $A B B: 2$ ways
Utilizing the general generating function:

$$
f(x)=\left(1+x+x^{2}\right)\left(1+x+x^{2}\right)=1+x^{2}+x^{4}+2 x+2 x^{2}+2 x^{3}=1+2 x+3 x^{2}+2 x^{3}+x^{4}, a_{2}=3, a_{3}=2 .
$$

Eg. There are infinite A 's, B 's, and C 's. In how many ways can we select \boldsymbol{n} letters from A 's, B 's, and C 's, with even numbers of A 's?

$$
f(x)=\left(1+x^{2}+x^{4}+\cdots\right)\left(1+x+x^{2}+x^{3}+x^{4}+\cdots\right)\left(1+x+x^{2}+x^{3}+x^{4}+\cdots\right)
$$

(Sol.)

$$
\begin{gathered}
=\frac{1}{1-x^{2}} \cdot \frac{1}{1-x} \cdot \frac{1}{1-x}=\frac{1}{1+x}\left(\frac{1}{1-x}\right)^{3}=\frac{\frac{1}{8}}{1+x}+\frac{\frac{1}{8}}{1-x}+\frac{\frac{1}{4}}{(1-x)^{2}}+\frac{\frac{1}{2}}{(1-x)^{3}} \\
a_{\mathrm{n}}=\frac{1}{8}(-1)^{n}+\frac{1}{8}+\frac{1}{4}(n+1)+\frac{1}{2} C_{2}^{n+2}
\end{gathered}
$$

Eg. There are 200 identical chairs. In how many ways can we place 4 rooms to have 20 , or 40 , or 60 , or 80 , or 100 chairs in each room?
(Sol.)

$$
\begin{gathered}
\left(x^{20}+x^{40}+x^{60}+x^{80}+x^{100}\right)^{4}=\left[x^{20}\left(1+x^{20}+x^{40}+x^{60}+x^{80}\right)\right]^{4}=x^{80}\left(\frac{1-x^{100}}{1-x^{20}}\right)^{4} \\
=x^{80}\left(1-4 x^{100}+6 x^{200}-4 x^{300}+x^{400}\right)\left(1+4 x^{20}+10 x^{40}+\cdots+C_{6}^{9} x^{120}+\cdots\right) \\
a_{200}=C_{6}^{9}-16=68
\end{gathered}
$$

Exponential generating function: $f(x)=b_{0}+b_{1} x+b_{2} \frac{x^{2}}{2!}+b_{3} \frac{x^{3}}{3!}+\cdots$ is the exponential generating function of a series: $b_{0}, b_{1}, b_{2}, b_{3}, \ldots$.
Eg. $(1+x)^{n}=C_{0}^{n}+C_{1}^{n} x+C_{2}^{n} x^{2}+\cdots+C_{n}^{n} x^{n}=P_{0}^{n}+P_{1}^{n} \frac{x}{1!}+P_{2}^{n} \frac{x^{2}}{2!}+\cdots+P_{n}^{n} \frac{x^{n}}{n!}$

Applications of the exponential generating function of a series: Calculating permutations
Eg. In how many ways can we select 4 letters from ENGINE?
(Sol.) For E, N : we can select $0,1,2$ but for G, I : we can select 0,1

$$
\begin{aligned}
& \left(1+x+\frac{x^{2}}{2!}\right)^{2}(1+x)^{2}=\left(1+x^{2}+\frac{x^{4}}{(2!)^{2}}+2 x+2 \frac{x^{2}}{2!}+2 x \frac{x^{2}}{2!}\right)\left(1+2 x+x^{2}\right) \\
& =b_{0}+b_{1} x+b_{2} \frac{x^{2}}{2!}+b_{3} \frac{x^{3}}{3!}+b_{4} \frac{x^{4}}{4!} \cdots, b_{4}=102
\end{aligned}
$$

Eg. There are $2 A$'s and $2 B$'s. (a) In how many ways of permutations can we select 2 letters from A 's, and B 's? (b)In how many ways can we select 3 letters from A 's, and B's?
(Sol.) (a) $A A, A B, B A, B B$: 4 ways. (b) $A A B, B A A, A B A, B B A, B A B, A B B$: 6 ways
Utilizing the exponential generating function:
$f(x)=\left(1+x+\frac{x^{2}}{2!}\right)\left(1+x+\frac{x^{2}}{2!}\right)=1+x^{2}+\frac{x^{4}}{4}+2 x+x^{2}+x^{3}=1+2 x+2 x^{2}+x^{3}+\frac{x^{4}}{4}=1+\frac{2 x}{1!}+\frac{4 x^{2}}{2!}+\frac{6 x^{3}}{3!}+\frac{6 x^{4}}{4!}$,
$\therefore b_{2}=4, b_{3}=6$.

Eg. A company hires 11 new employees, each of whom is to be assigned to one of 4 subdivisions. Each subdivision will get at least one new employee. In how many ways can these assignments be made?
(Sol.) $f(x)=\left(x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots\right)^{4}=\left(e^{x}-1\right)^{4}=e^{4 x}-4 e^{3 x}+6 e^{2 x}-4 e^{x}+1$

$$
=\cdots+\left(4^{11}-4 \cdot 3^{11}+6 \cdot 2^{11}-4 \cdot 1^{11}\right) \frac{x^{11}}{11!}+\cdots
$$

\therefore There are $\left(4^{11}-4 \cdot 3^{11}+6 \cdot 2^{11}-4\right)$ ways!

5-3 Discrete Probability

Discrete probability functions, $P(x): 0 \leq P(x) \leq 1, \forall x \in S$ and $\sum_{x \in S} P(x)=1$.
Theorem $P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)-P\left(E_{1} \cap E_{2}\right)$.
Eg. Two fair dice are rolled. What is the probability of getting doubles (two dice showing the same number) or a sum of $\mathbf{6}$?
(Sol.) Let E_{1} be get doubles and E_{2} be get a sum of $6(=1+5=2+4=3+3=4+2=5+1)$.
$P\left(E_{1}\right)=6 \cdot\left(\frac{1}{6}\right)^{2}=\frac{1}{6}, P\left(E_{2}\right)=5 \cdot\left(\frac{1}{6}\right)^{2}=\frac{5}{36}, P\left(E_{1} \cap E_{2}\right)=\frac{1}{36}$,
$P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)-P\left(E_{1} \cap E_{2}\right)=\frac{5}{18}$

Theorem If E_{1} and E_{2} are mutually exclusive events $\left(E_{1} \cap E_{2}=\phi\right)$, then $P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)$.
Eg. Two fair dice are rolled. What is the probability of getting doubles (two dice showing the same number) or a sum of 5 ?
(Sol.) Let E_{1} be get doubles and E_{2} be get a sum of $5(=1+4=2+3=3+2=4+1)$.
$E_{1} \cap E_{2}=\phi, P\left(E_{1}\right)=6 \cdot\left(\frac{1}{6}\right)^{2}=\frac{1}{6}, P\left(E_{2}\right)=4 \cdot\left(\frac{1}{6}\right)^{2}=\frac{1}{9}, P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)=\frac{5}{18}$
Theorem Let E be an event, $P(E)+P(\bar{E})=1$.

Theorem If E_{1} and E_{2} are independent events, $P\left(E_{1} \cap E_{2}\right)=P\left(E_{1}\right) P\left(E_{2}\right)$.
Eg. Two fair coins are tossed. What is the probability of head on the first toss and tail on the second toss?
(Sol.) Let E_{1} be head on the first toss and E_{2} be tail on the second toss. Intuitively, E_{1} and E_{2} are independent events. $\therefore P\left(E_{1} \cap E_{2}\right)=P\left(E_{1}\right) P\left(E_{2}\right)=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4}$

Conditional probability functions, $\boldsymbol{P}(\boldsymbol{E} \mid \boldsymbol{F}): P(E \mid F)=P(E \cap F) / P(F)$
Eg. There was a test for AIDS with the property that $\mathbf{9 0 \%}$ of those with AIDS reacted positively whereas 5% of those without AIDS react positively. Assume that $\mathbf{1 \%}$ of patients in a hospital have AIDS. What is the probability that a patient selected at random who reacts positively to this test actually has AIDS?
(Sol.) $P($ AIDS \mid React positively $)=P($ AIDS \cap React positively $) / P$ (React positively)
$=\frac{\frac{1}{100} \times \frac{90}{100}}{\frac{1}{100} \times \frac{90}{100}+\frac{99}{100} \times \frac{5}{100}}=\frac{2}{13}$

Bayes' Theorem Suppose that the mutual exclusive classes are $C_{1}, C_{2}, C_{3}, \ldots$, and C_{n}. For a feature set \boldsymbol{F}, we have $P\left(C_{\mathbf{j}} \mid \boldsymbol{F}\right)=\frac{P\left(F \mid C_{j}\right) P\left(C_{j}\right)}{\sum_{i=1}^{n} P\left(F \mid C_{i}\right) P\left(C_{i}\right)}$.

